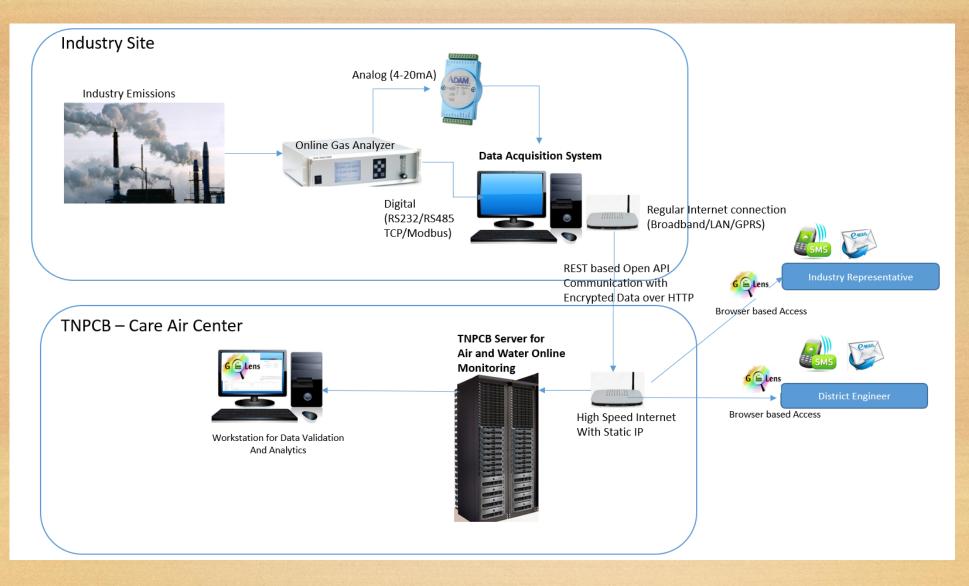
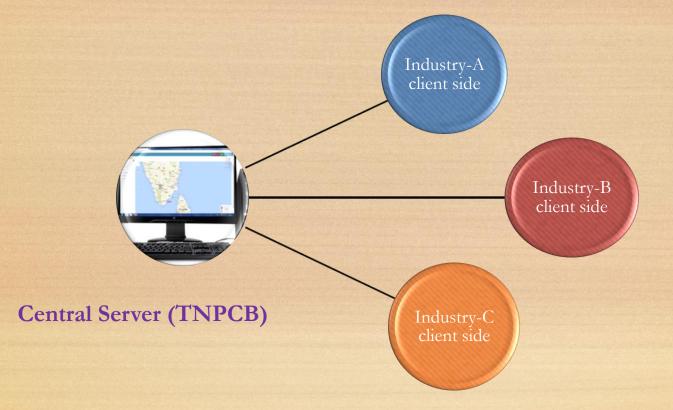
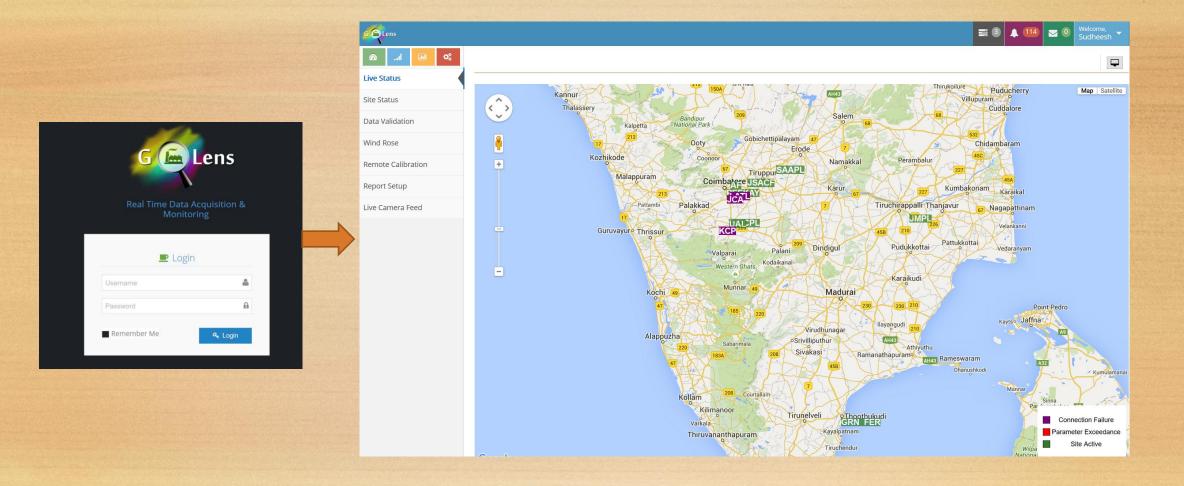
TAMIL NADU POLLUTION CONTROL BOARD


CARE AIR CENTRE

CENTRE FOR ASSESSING REAL TIME AIR (QUALITY) INFORMATION REPORTS

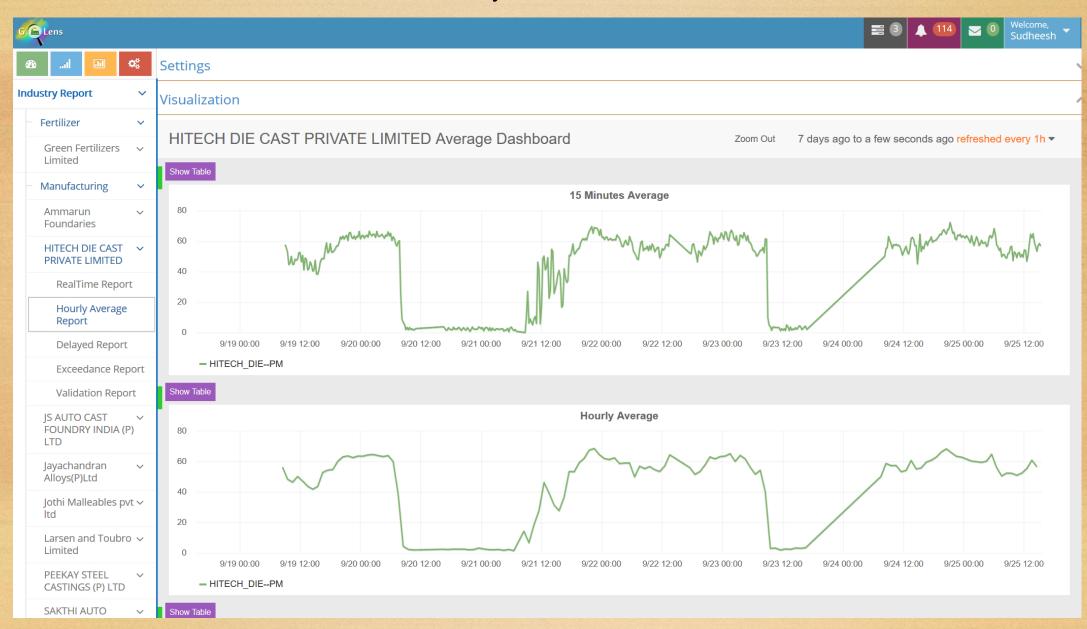

Vision of CARE AIR CENTRE

- To monitor all the industrial emissions in TamilNadu on real time basis to analyse the trend of emissions into the Atmosphere.
- Apart from Emission monitoring, Ambient Air monitoring around the Industrial premises and Effluent parameters are monitored at the Centre


Online Monitoring Client-Server Environment at TNPCB

- In August 2015 the TNPCB has introduced an new client-server environment.
- In this platform the central sever is unique and the client side is an open module.
- To facilitate more connectivity & easy access to industry and regulator.

New Central Server Login Page:



Central Server (TNPCB)

Site Status

6 Cens						≡ 1 ▲ 8		come, TNPCB
28 🖬 🗵	Site Status							
Live Status							_	
Site Status						🖹 CSV		🖹 PDF
ata Validation	Show 100 ▼ entries					Search:		
Wind Rose	Site Name	Site Label 🗘	City ÷	Industry 🗘	Industry ID \$	Last Synchronized 🗢	Site Status	
emote Calibration	Ammarun Foundaries	AF	coimbatore	Manufacturing	site_107	12 minutes ago	Active	P
eport Setup	Green Fertilizers Limited	GRN_FER	Tuticorin	Fertilizer	site_102	11 days ago	Inactive	
ive Camera Feed	HITECH DIE CAST PRIVATE LIMITED	HDCPL	Achipatti,Kurumbapalayam Village	Manufacturing	site_109	12 minutes ago	Active	P
	Jayachandran Alloys(P)Ltd	JCA	Coimbatore	Manufacturing	site_104	24 days ago	Inactive	
	Jothi Malleables pvt ltd	JMPL	Trichy	Manufacturing	site_106	12 minutes ago	Active	Ð
	JS AUTO CAST FOUNDRY INDIA (P) LTD	JSACF	COIMBATORE	Manufacturing	site_105	11 minutes ago	Active	P
	KARUR KCP PACKKAGINGS LTD	КСР	POLLACHI	Thermal Power	site_103	13 minutes ago	Active	P
	Larsen and Toubro Limited	LATL	Coimbatore	Manufacturing	site_108	12 minutes ago	Active	
	PEEKAY STEEL CASTINGS (P) LTD	PEEKAY	Coimbatore	Manufacturing	site_112	12 minutes ago	Active	P
	SAKTHI AUTO ANCILLARY PRIVATE LIMITED	SAAPL	Coimbatore	Manufacturing	site_111	12 minutes ago	Active	P
	UNICAST ALLOYS LTD	UAL	Kurumbapalayam,Achipatti	Manufacturing	site_110	12 minutes ago	Active	Ð
	Showing 1 to 11 of 11 entries						Previous	Ne

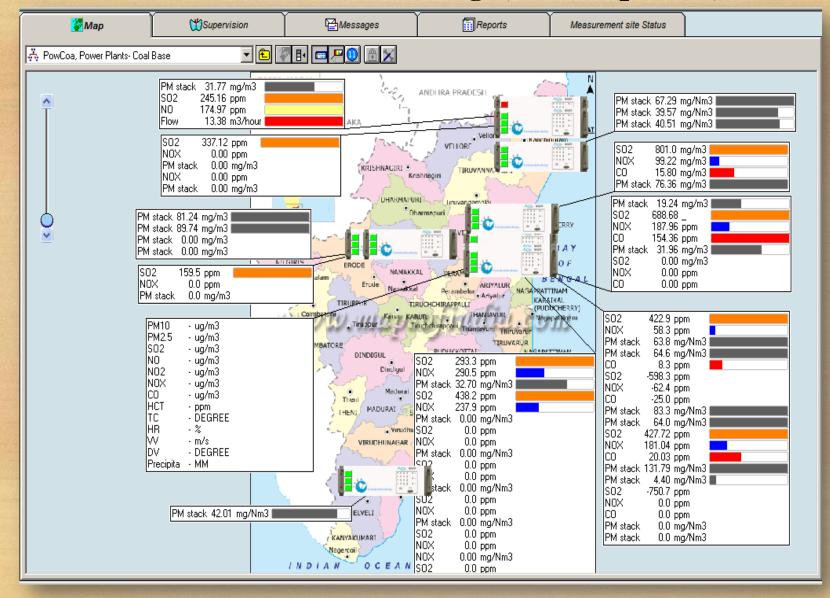
Data Analysis at CAC TNPCB

Automated Alerts sent to the Industry & Regulator

6 O Lens										ome, TNPCB 🔻
88 88		weledge View	UnRead X					Search:		
	□ •	Site Name 🗢	City 🗢	Monitoring Type 🗢	Monitoring ID 🗢	Time Created 🗢	Parameter Name ≑	Alarm Message 🗘 🗘	Alarm Category ≑	Alarm Priority ¢
	•	Green Fertilizers Limited	Tuticorin	Ambient	SPIC_AAQMS	2015-09- 04T12:07:53	Wind_Direction	Green Fertilizers Limited Exceedance Wind_Direction 145.0 Degree(100.0 Degree) at 2015-09-04 12:07:53.	Critical	Very High
	•	HUMAN BIOLOGICAL INSTITUTE	Ooty	Effluent	ETP	2015-07- 03T23:20:44	TSS	HUMAN BIOLOGICAL INSTITUTE Exceedance TSS 247.918991089 mg/l(100.0 mg/l) at 2015-07-03 23:20:44.	Critical	Very High
	•	HUMAN BIOLOGICAL INSTITUTE	Ooty	Effluent	ETP	2015-07- 10T12:25:55	TSS	HUMAN BIOLOGICAL INSTITUTE Exceedance TSS 104.431945801 mg/l(100.0 mg/l) at 2015-07-10 12:25:55.	Critical	Very High
	•	Green Fertilizers Limited	Tuticorin	Ambient	SPIC_AAQMS	2015-09- 04T18:41:52	Wind_Direction	Green Fertilizers Limited Exceedance Wind_Direction 187.0 Degree(100.0 Degree) at 2015-09-04 18:41:52.	Critical	Very High
	•	Green Fertilizers Limited	Tuticorin	Ambient	SPIC_AAQMS	2015-09- 05T00:44:56	Wind_Direction	Green Fertilizers Limited Exceedance Wind_Direction 240.0 Degree(100.0 Degree) at 2015-09-05 00:44:56.	Critical	Very High
	•	KARUR KCP PACKKAGINGS LTD	POLLACHI	Emission	POWER_PLANT	2015-09- 08T05:36:08	NOx	KARUR KCP PACKKAGINGS LTD Exceedance NOx 107.724 mg/Nm3(100.0 mg/Nm3) at 2015-09-08 05:36:08.	Critical	Very High
		KARUR KCP PACKKAGINGS LTD	POLLACHI	Emission	POWER_PLANT	2015-09- 06T10:45:42	NOx	KARUR KCP PACKKAGINGS LTD Exceedance NOx	Critical	Very High

Parameters Monitored at CAC

Emission Parameters	Ambient Parameters	Effluent Parameters
 PM SO₂ NOx CO CO₂ THC VOC NH₃ HF Gl₂ HCI Mercapton VCM Fluorine Flow Temp 	 PM_{10} $PM_{2.5}$ SO_2 NO NO_2 NO_2 NO_3 C_6H_6 C_2 HCl CCC HCl VOC NH_3 CH_4 $HCNM$ $Fluorine$ HCT VCM O_3 $Bromine$ $Hydrogen$ RH $Temp$ $Wind Direction$ 	 pH TDS Flow Temperature

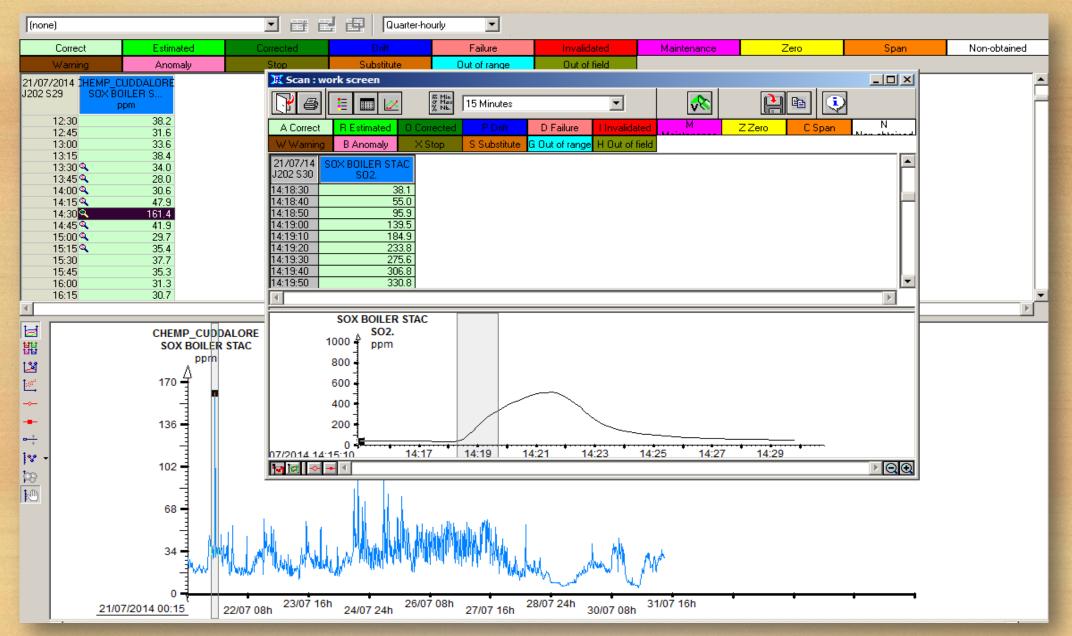

*

Wind speed

Sector Wise Monitoring (Cement plants)

Sector Wise Monitoring (Power plants)

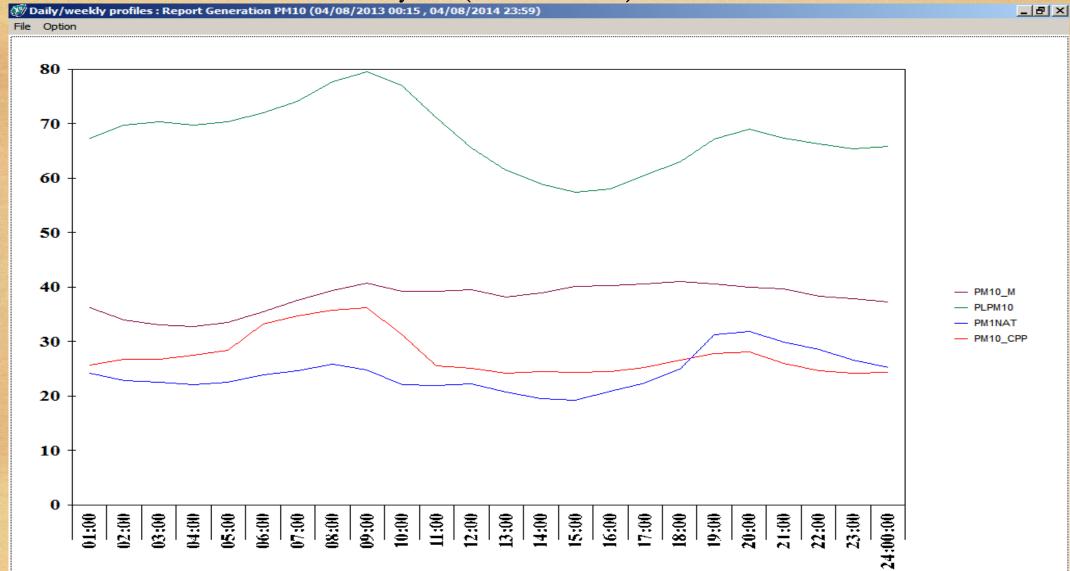
Online Remote Calibration performed at Care Air Centre(TNPCB)


Calibration Details

📲 🖓 🚭 🛯 🧮 📰 📈 🛛 📲 🐘 Calibration of 05/08/2014 02:00:00 💽 🛛 🖍 💸 🖉 🔛 🗈 🗍 😳	
Image: Calibration of 05/08/2014 02:00:00 Image: Calibration of 05/08/2014 02:00:00 Image: Calibration of 05/08/2014 02:00:00	
A Correct R Estimated O Corrected P Drift D Failure I Invalidated M Maintenance Z Zero	C Span N Non-obtained
W Warning B Anomaly X Stop S Substitute G Out of range H Out of field	
General results Quality Criteria 05/08/14 Phase value mean min max std-dev drf st-d drf abs D drf relat drf relat drf st-d drf abs D drf relat drf relat drf st-d drf abs D drf relat drf st-d drf st-d	
05/08/14 Phase value mean min max std-dev diff st-d diff abs D diff abs U diff relat 02:00:00 zero 0 0.102947 0.042554 0.187584 0.044325 0 0 0 0 0	
02:07:00 span 2 1.8834 1.843411 1.89301 0.014633 0 1 3 3	
02:10:00 span 3 2 1.833462 1.813722 1.869104 0.018045 0 1 3 3 02:15:00 span 4 0 0.069479 0.026917 0.128681 0.030125 0 0 0 0 0	
02:15:00 span 4 0 0.069479 0.026917 0.128681 0.030125 0 0 0 0 span 5 5 5.153459 5.11059 5.19429 0.026876 0 4 6 6	
05/08/14 CO_TEMPLE_A	
J217 S32 C0.1	
02:21:00 0.03 02:21:10 0.03	
02:21:20 0.04	
02:21:30 0.04 02:21:40 0.05	
02:21:50 0.05	
02:22:00 0.05 0.06 0.06	
02:22:30 4.86 02:22:40 5.09	
02:22:50 5.11	
02:23:00 5.11 02:23:10 5.11	
02:23:20 5.11	
02:23:30 5.12 02:23:40 5.12	
02:23:50 5.12	
02:24:00 5.12 02:24:10 5.12	
02:24:20 5.13	
	×
CO_TEMPLE_A	
CO.1 5.0 mg/m3	- I
3.80 -	
05/08/2014 02:00:10 02:06 02:12 02:18 02:24	02:30

Report on Calibration

					ZERO (PH	ASE I)							
Date and Time	Standard value	Measured value	min	max	st-dev	st-dev dr	abs dr lo	abs dr hi	rel drift	IPD1	IPD2	IPD3	IPD4
	mg/m3	mg/m3	mg/m3	mg/m3	mg/m3	mg/m3	mg/m3	mg/m3	mg/m3	mg/m3	mg/m3	mg/m3	mg/m3
05/08/2014 02:00:00	0.00	0.10	0.04	0.19	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
				SPAN (GAS- 2 mg	/m ³ (PHAS	E II)						
Date and Time	Standard value	Measured value	min	max	st-dev	st-dev dr	abs dr lo	abs dr hi	rel drift	IPD1	IPD2	IPD3	IPD4
	mg/m3	mg/m3	mg/m3	mg/m3	mg/m3	mg/m3	mg/m3	mg/m3	mg/m3	mg/m3	mg/m3	mg/m3	mg/m3
05/08/2014 02:07:00	2.00	1.88	1.84	1.89	0.01	0.00	1.00	3.00	3.00	0.00	0.00	0.00	0.00
					ZERO (PH	ASE III)							
Date and Time	Standard value	Measured value	min	max	st-dev	st-dev dr	abs dr lo	abs dr hi	rel drift	IPD1	IPD2	IPD3	IPD4
	mg/m3	mg/m3	mg/m3	mg/m3	mg/m3	mg/m3	mg/m3	mg/m3	mg/m3	mg/m3	mg/m3	mg/m3	mg/m3
05/08/2014 02:15:00	0.00	0.07	0.03	0.13	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
				SPAN (GAS-5 mg/	m ³ (PHAS	E IV)						
Date and Time	Standard value	Measured value	min	max	st-dev	st-dev dr	abs dr lo	abs dr hi	rel drift	IPD1	IPD2	IPD3	IPD4
Date and Time	mg/m3	mg/m3	mg/m3	mg/m3	mg/m3	mg/m3	mg/m3	mg/m3	mg/m3	mg/m3	mg/m3	mg/m3	mg/m3
05/08/2014 02:17:00	5.00	5.15	5.11	5.19	0.03	0.00	4.00	<mark>6.0</mark> 0	<mark>6.00</mark>	0.00	0.00	0.00	0.00


Data-Exceedance

Daily profile Report of different Analyser model and make in a Industry Area.

Calculation result				
File Display Chart				
Exit Save Print Copy	Grid H		ן	
Daily Profile	PM10_M	PLPM10	PM1NAT	PM10_CPP
01:00	36.13	67.34	24.17	25.70
02:00	33.98	69.75	22.89	26.76
03:00	33.07	70.29	22.55	26.79
04:00	32.73	69.79	22.05	27.52
05:00	33.53	70.27	22.52	28.40
06:00	35.48	71.97	23.87	33.16
07:00	37.53	74.14	24.67	34.75
08:00	39.43	77.66	25.89	35.74
09:00	40.78	79.58	24.81	36.21
10:00	39.16	77.02	22.04	31.18
11:00	39.27	71.15	21.89	25.52
12:00	39.46	65.57	22.26	25.02
13:00	38.10	61.49	20.65	24.13
14:00	38.98	58.97	19.49	24.43
15:00	40.06	57.35	19.17	24.38
16:00	40.21	58.05	20.79	24.48
17:00	40.59	60.51	22.39	25.26
18:00	41.00	62.96	24.89	26.52
19:00	40.53	67.24	31.19	27.81
20:00	39.95	69.04	31.89	28.05
21:00	39.62	67.28	29.95	26.05
22:00	38.33	66.32	28.47	24.58
23:00	37.83	65.36	26.61	24.11
24:00:00	37.25	65.80	25.18	24.37

Hourly Profile of PM_{10} in Industry Area for Period of 1year(2013-2014)

TAMILNADU POLLUTION CONTROL BOARD Water Quality WATCH CENTER

EFFLUENT MONITORING

Vision of Water Quality Watch

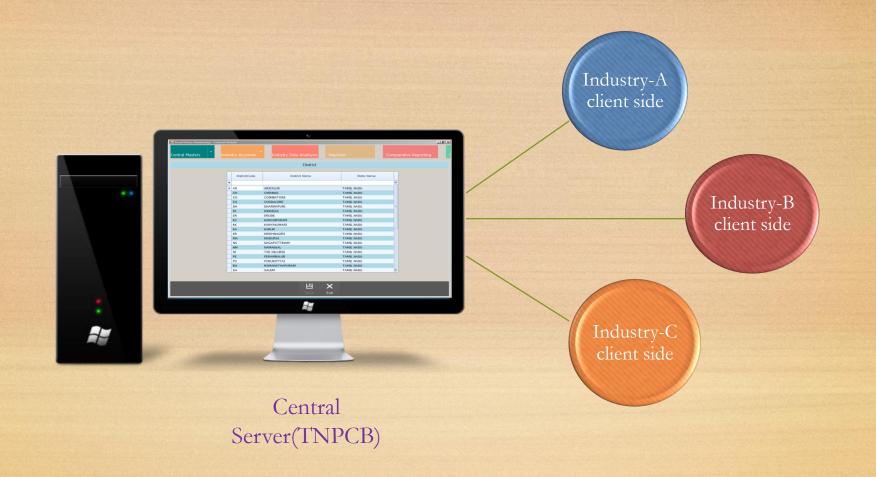
- To build a Real Time Monitoring System for Water Pollution Monitoring in terms of quantitative measurements and qualitative measurements.
- To monitor operations of Effluent Treatment plants, performance evaluation of waste water recovery system, and reject management system.
- To ensure Zero Liquid Discharge System (ZLDS) of IETPs and CETPs.
- 4. To monitor member unit as part of CETPs.
- 5. Monitoring of water quality of river and water bodies.

Water Quality Monitoring & Parameters

1. Effluent Discharge from Industries

- BOD, COD, TSS, pH, Temp, Flow

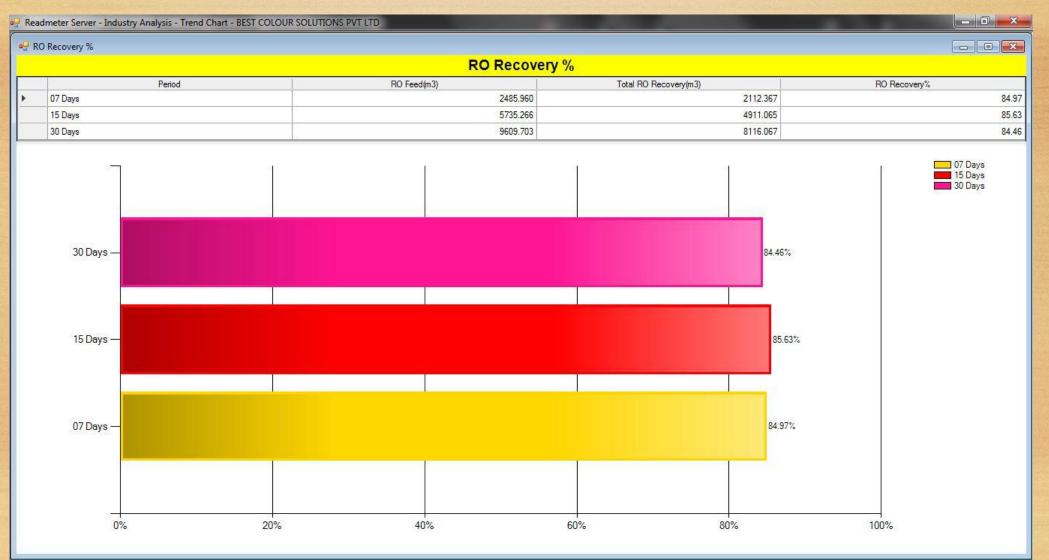
2. ZLDS Units

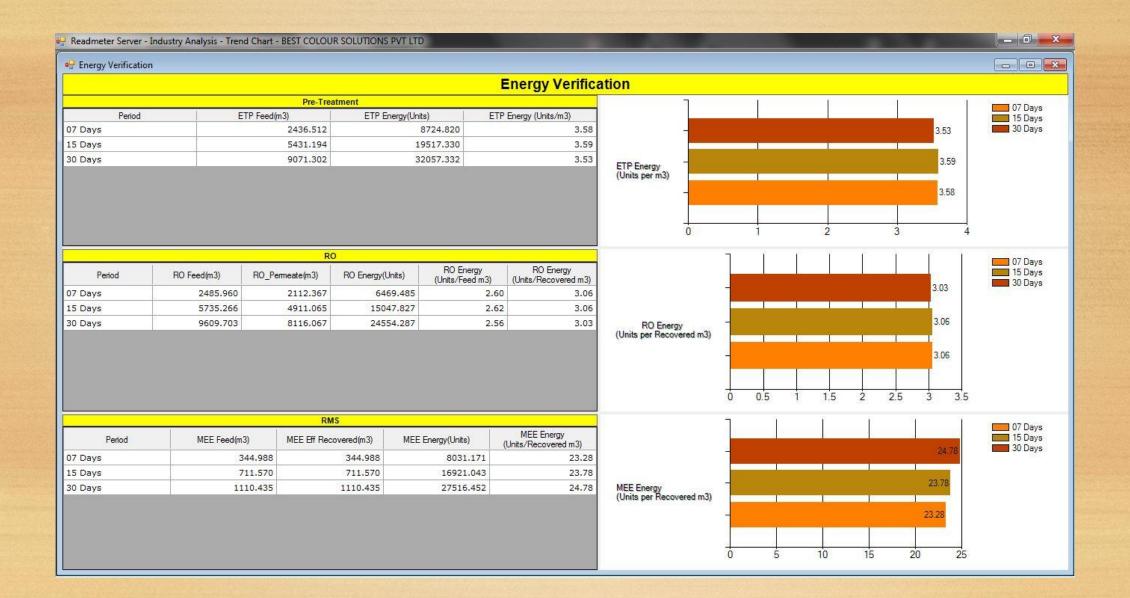

- Water, Energy, Steam, DO, pH, TDS, Pressure, Tank Level

3. Rivers & Water Bodies

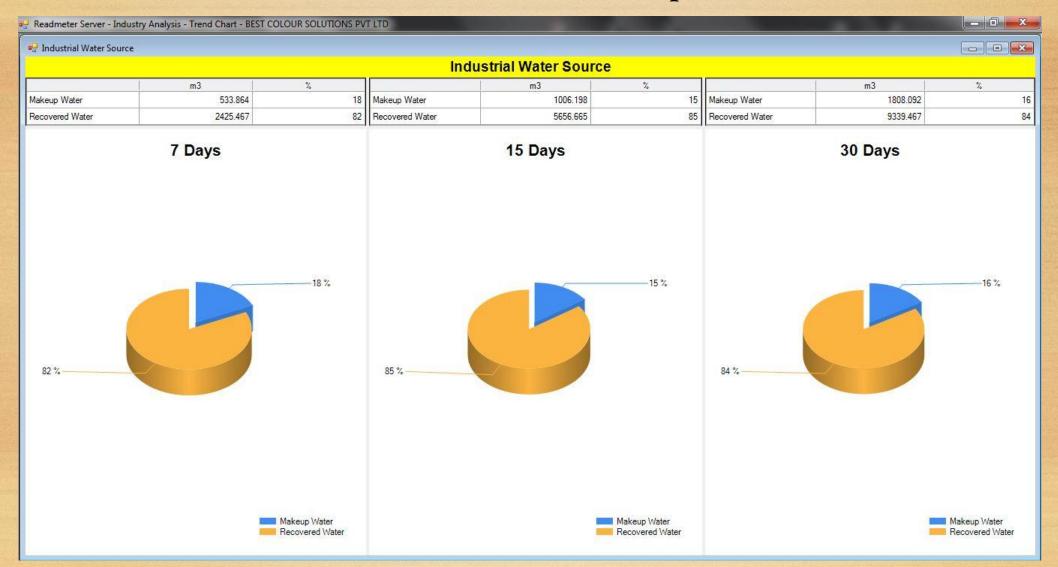
- Temperature, TDS, DO, pH, Depth

In August 2015 the TNPCB has introduced an new clientserver environment for WQW

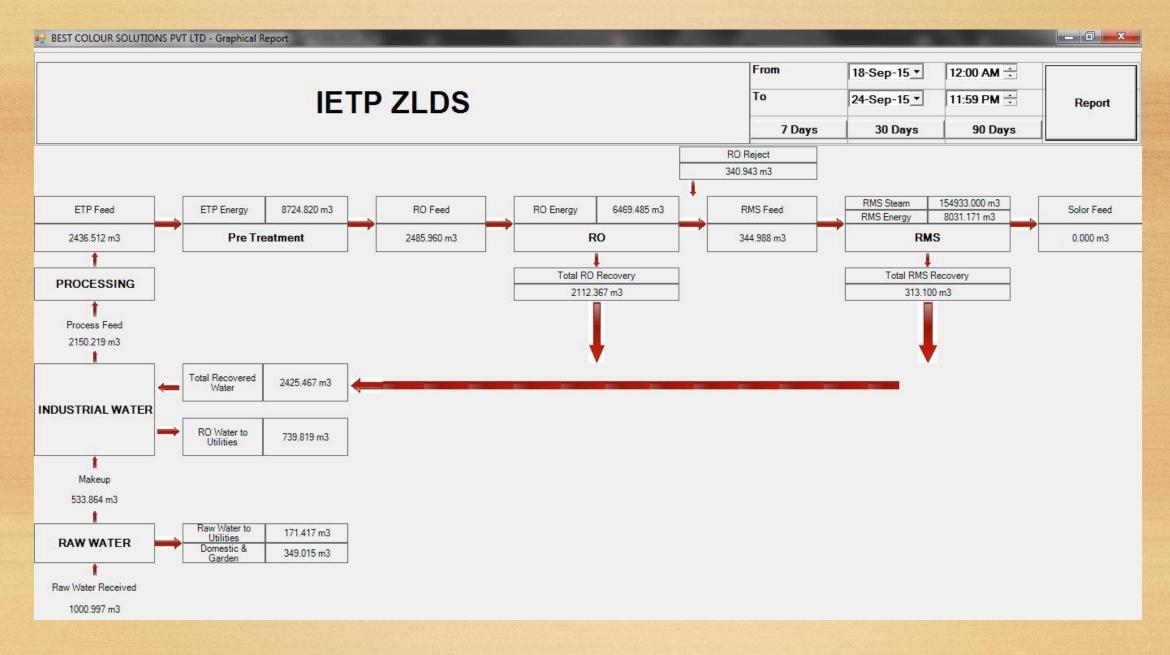

WQW is exclusively for effluent monitoring, the data are in cumulative basis.

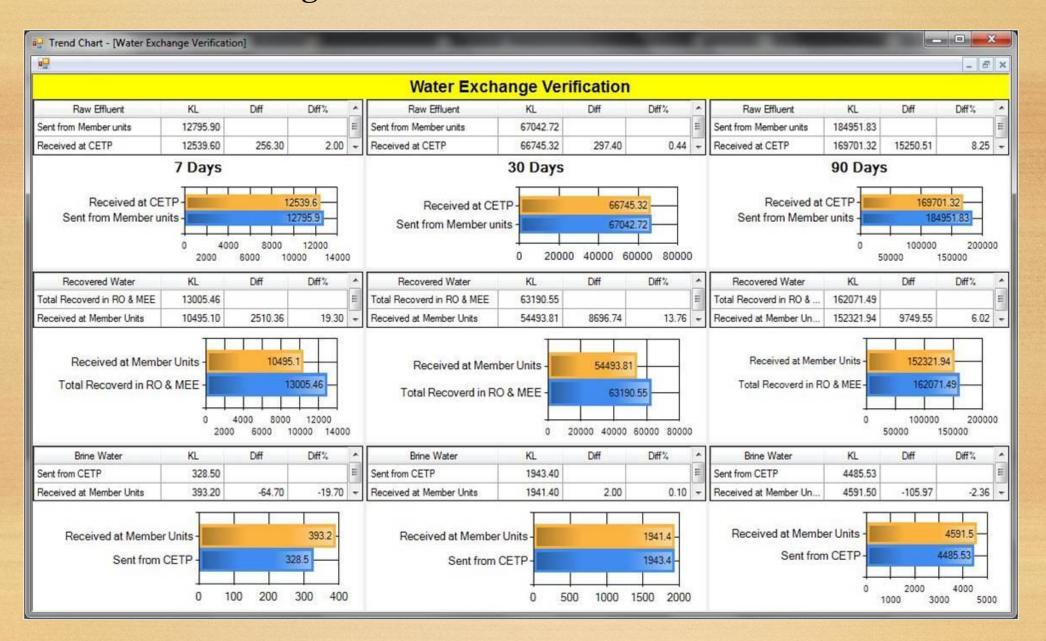

Water Quality Trend Graph – TSS in mg/Litre

							And the second second				
Readmeter Server - Ir Select Unit ZLDS Mo				lerts Mar	agar Granhi	ical Report		1 A A			
Meter Type	uniconing The	id Chart Dat		t Template	175 3		Period			Frequency	
Select All			Me	ters			From	05-Sep-15	12:00 AM 🛨	Every	
 ✓ COD ✓ Flow ✓ PH 			I B I C	OD		× E	То	24-Sep-15	11:59 PM 🛨	15 ÷	Minute(s) 💌
I TSS			⊻ F ⊻ p			-	7 Days	30 Days	90 Days		Report
0		E			15 12.00	AM To : 24-Sep-15	11.50 PM @	15 Minuto(c)	Data Consol	idation	
Date time	BOD(mg/litre)	COD(mg/Litre)				Am 10.24-0ep-15	11.59 F M (@		Data Collison		
05-09-15 12:14 AM	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	152.927		7.534	12.188						
05-09-15 12:29 AM	6.896	151.260	960.802	7.531	9.858						
05-09-15 12:44 AM	6.915	155.169	977.167	7.540	15.679						
05-09-15 12:59 AM	6.929	156.044	986.792	7.538	16,906						
05-09-15 01:14 AM	6.901	153.231	955.979	7.527	12.640						
05-09-15 01:29 AM	6.904	155.454	881.854	7.536	15.881						
05-09-15 01:44 AM	6.959	156.267	852.198	7.544	17.196						-
						MF	Report				
100						Ĩ	-26				TSS(mg/Litre)
80									2	*	£
60											
00				G;						6	
40				10							D
20-	WHIMPHILL.		The other the state	We build	u lu Wi - u	March all Ministration and of	in hit he withold	and the state	L III. K. c. kolman.	e land MahaMadh	
0	- 11 1 CM-	and the state	10100 .	N M M	martin muchall	M. L. Malder Las. Lide. all Maine MN	WAINerstell's All Acoustics Vielly	month manufacture	White Marken Prachanda ta subu	MAAM, A. Icha word,	b
. en			10-09-20	15 04:59	9:00	15-09-2015 0	9:59:00	20-09	9-2015 14:29:00		
						Date_Time					


ZLDS Performance – RO Recovery

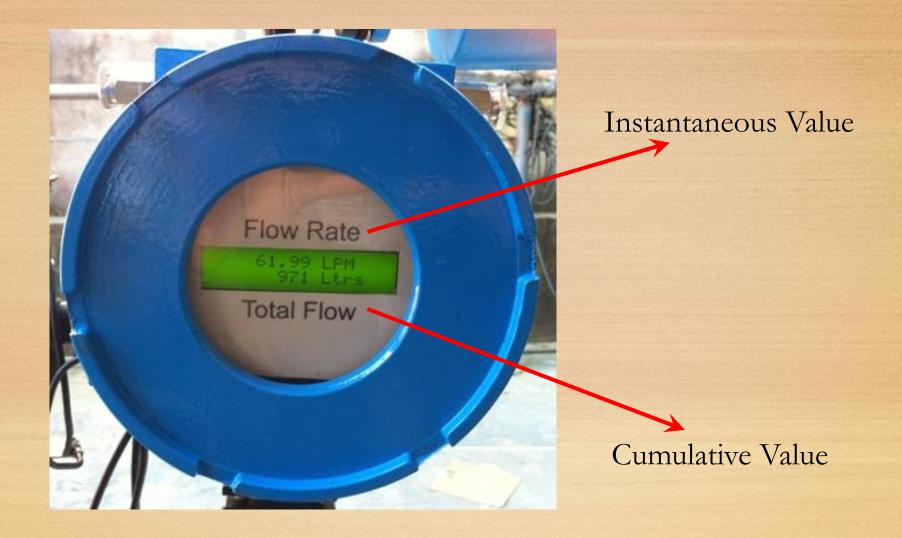
ZLDS Performance – Energy Audit


ZLDS Performance and Industrial and makeup water

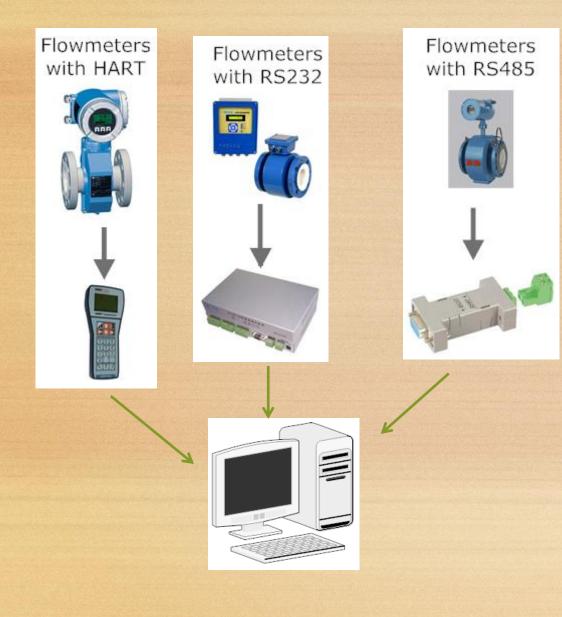

ZLDS Performance – Water Balance

eadmeter Server - Industr								
Effluent Water Balance								
			Efflue	ent Water Balance				
	m3	%		m3	%		m3	%
dustrial Usage	3061.455		Industrial Usage	6758.361		Industrial Usage	11101.218	
covered @ RO	2112.367	69.00	Recovered @ RO	4911.065		Recovered @ RO	8116.067	73
covered @ MEE	344.988	11.27	Recovered @ MEE	711.570		Recovered @ MEE	1110.435	10
ar Feed	0.000	0.00	Solar Feed	0.000	0.00	Solar Feed	0.000	C
<u>t</u>		80.27	Nett		83.2	Nett		83
11.27%		0% 69%	10.53%		0% 72.67%	10%		0% 73.11%

ZLDS Performance – Full Schematic



Water Exchange Verification between CETP & Member Units



Quantitative Monitoring

Electro Magnetic Flow Meter (EMFM)

Digital Communication Technology

Both Flow Rate & Total Flow can be read from Flow Meter to Computer (without conversion)

Issues in online Monitoring

No Quality analyser

- Connecting thru in between logic
- Manipulating data

Sensors are sold as analyser in Indian market for cheap price to convince the regulator.

➢ No trained manpower

Limited knowledge CEMS management

Lack of resources to understand the same

Avoidance of CEMS regime

Basic Requirement of Today in Industries perspective

Cheap analyser
Easy un-interrupted data transfer system
Training
To conduct Calibration of the analyser with required frequency
To maintain necessary logs
Conducting Third party trial and Audits
Manpower availability

Today requirement in Regulators perspective

> Training

Understanding CEMS and data management

Calibration and data Validation

Establishment of Online monitoring centers

Generation of Reports

Preparation of Report for Pollution Mitigation and Management

Web publishing and Management etc

Technical manpower

Thank You

R.Dhanasekaran, Chief Scientific Officer, Tamilnadu Pollution Control Board 76, Mount Salai, Guindy, Chennai-32 Ph: 044 22353157 Email: cactnpcb@gmail.com, acctnpcb@gmail.com, wgwtnpcb@gmail.com